资源简介
背景介绍
2018 年,ACM 宣布,有“深度学习三巨头”之称的Yoshua Bengio、Yann LeCun、Geoffrey Hinton 共同获得了 2018 年的图灵奖,这是图灵奖 1966 年建立以来少有的一年颁奖给三位获奖者。
也是从那时开始,深度神经网络促加速了现代计算机科学的进程,也加速了这个世界的 AI 化。如今从手机 App 到 AI 客服,从城市智慧交通与智慧医疗,再到工业互联网、智慧制造、智慧农业……这些背后都有深度学习的功劳。
专栏解读
想要成为一名优秀的深度学习工程师并不容易,研究 AI 有着天然的高门槛和高要求。很多人都是理论上的王者,实践上的青铜,自以为对框架、算法的理解足够,但因为缺乏应用场景和实践机会,遇到实际问题仍然不知道该怎么抽象问题然后用模型解决。
而本门课程将会从理论基础、工具使用、实战上手三个方面,带领你从理论开始,一步步认识和了解深度学习,并学会打造深度学习模型。
模块一:深度学习的基础概念。这个模块就像是打地基,老师会带你了解深度学习会用到的基础知识,主要是数学知识和理论知识。还会对深度学习中常用的结构进行详细的介绍,比如你经常听到的 CNN、DNN、GAN 等,从零开始,逐步深入。通过这一部分的学习,你会了解深度学习必备的基础知识。
模块二:深度学习的工具与框架。这个模块就像是盖楼的砖瓦,有了理论知识,就可以将理论知识转化成代码,并用合适的框架、工具协助你开展工作。框架方面,目前常用的深度学习框架很多,有 TensorFlow、PyTorch 等,老师会以其中使用最广泛的 TensorFlow 作为切入点,带你熟悉图像处理工具、模型训练记录工具、交互工具等工具的使用。通过这一部分的学习,你就可以着手准备开发实战项目了。
模块三:深度学习经典问题的落地实战。这个模块就开始教你盖楼了,老师会选择几个常见的深度学习应用场景,包括图像分类、语义分割和自然语言处理,教你如何从零开始做模型、如何优化已有模型,一步步教你打造项目模型。通过这一部分的学习,你就可以打造属于你自己的深度学习模型。
讲师介绍
槐树 前腾讯高级算法研究员
他拥有深厚的一线研发经验,主攻 NLP 与 CV 的深度学习研究方向。目前在某国外互联网公司任数据科学家,为全球数亿用户提供了高可靠的基于深度学习的服务与应用。曾参与腾讯核心资讯产品的深度学习方面的体系搭建、算法研究和应用落地,为微信看一看、天天快报、腾讯短视频等业务提供了算法支撑。
资源目录
制作:百度网盘批量处理大师 若显示有错位情况,请使用notepad++软件打开 ——/计算机教程/07拉勾/037-522-深度学习入门与实战/ ├──文档 | ├──01 从神经元说起:数学篇.md 31.36kb | ├──02 从神经元说起:结构篇.md 23.89kb | ├──03 AI 术语:让你变得更加专业.md 22.24kb | ├──04 函数与优化方法:模型的自我学习(上).md 21.64kb | ├──05 前馈网络与反向传播:模型的自我学习(下).md 19.68kb | ├──06 线性回归模型:在问题中回顾与了解基础概念.md 27.13kb | ├──07 卷积神经网络:给你的模型一双可以看到世界的眼睛.md 29.22kb | ├──08 RNN 与 LSTM:模型也可以持续不断地思考.md 18.09kb | ├──09 自编码器:让模型拥有属于自己的表达和语言.md 21.38kb | ├──10 生成式对抗网络:艺术创造也可以成为深度学习的拿手好戏.md 16.28kb | ├──11 集成、共享、敏捷:Jupyter Notebook 的使用.md 29.43kb | ├──12 数据预处理:让模型学得更好.md 29.67kb | ├──13 张量、数据流图与概念:初步了解 TenorFlow.md 29.59kb | ├──14 工作机制与流程:通过手写识别深入了解 TenorFlow.md 24.11kb | ├──15 TenorBoard:实验统计分析助手.md 20.44kb | ├──16 图像分类:技术背景与常用模型解析.md 20.80kb | ├──17 图像分类:实现你的第一个图像分类实战项目.md 24.37kb | ├──18 语义分割:技术背景与算法剖析.md 21.28kb | ├──19 语义分割:打造简单高效的人像分割模型.md 26.73kb | ├──20 文本分类:技术背景与经典网络结构介绍.md 21.71kb | ├──21 文本分类:用 Bert 做出一个优秀的文本分类模型.md 32.72kb | ├──结束语 掌握深度学习,搭上 AI 快车.md 5.33kb | └──开篇词 掌握深度学习,畅游 AI 时代.md 10.49kb ├──01 从神经元说起:数学篇.mp4 92.15M ├──02 从神经元说起:结构篇.mp4 101.09M ├──03 AI 术语:让你变得更加专业.mp4 99.09M ├──04 函数与优化方法:模型的自我学习(上).mp4 102.40M ├──05 前馈网络与反向传播:模型的自我学习(下).mp4 80.19M ├──06 线性回归模型:在问题中回顾与了解基础概念.mp4 87.33M ├──07 卷积神经网络:给你的模型一双可以看到世界的眼睛.mp4 126.67M ├──08 RNN 与 LSTM:模型也可以持续不断地思考.mp4 61.29M ├──09 自编码器:让模型拥有属于自己的表达和语言.mp4 85.31M ├──10 生成式对抗网络:艺术创造也可以成为深度学习的拿手好戏.mp4 65.81M ├──11 集成、共享、敏捷:Jupyter Notebook 的使用.mp4 106.86M ├──12 数据预处理:让模型学得更好.mp4 124.12M ├──13 张量、数据流图与概念:初步了解 TenorFlow.mp4 113.97M ├──14 工作机制与流程:通过手写识别深入了解 TenorFlow.mp4 81.94M ├──15 TenorBoard:实验统计分析助手.mp4 65.57M ├──16 图像分类:技术背景与常用模型解析.mp4 106.06M ├──17 图像分类:实现你的第一个图像分类实战项目.mp4 94.68M ├──18 语义分割:技术背景与算法剖析.mp4 110.72M ├──19 语义分割:打造简单高效的人像分割模型.mp4 120.88M ├──20 文本分类:技术背景与经典网络结构介绍.mp4 93.05M ├──21 文本分类:用 Bert 做出一个优秀的文本分类模型.mp4 133.06M ├──结束语 掌握深度学习,搭上 AI 快车.mp4 18.05M └──开篇词 掌握深度学习,畅游 AI 时代.mp4 46.62M
资源下载
2、不是24小时在线的,请耐心等待。
3、切勿外传资源,赚个积分得不偿失,后台记录一致的话直接封号!!!
4、求各位友站大佬放过,毕竟你在这边也是有相关记录的。
谢谢
感谢分享
太棒了 我需要
感谢分享
深度学习入门与实战-带
看看拉勾的深度学习,感谢分享。
谢谢分享
感谢分享
太棒了 我需要
学习
感谢分享
感谢分享
感谢分享
学习
谢谢分享
感谢分享
太棒了 我需要