Spark+ES+ClickHouse 构建DMP用户画像(完结)

资源简介

行业竞争越来越激烈,精细化经营成为各企业取胜的秘籍。用户画像系统作为提供精准用户数据的重要来源,已经成为企业必备的核心平台,人才缺口大,薪资高。本课程将基于大数据主流技术,数据挖掘核心算法,带你打造企业实用的用户画像平台,提升你的个人竞争力。

《Spark+ES+ClickHouse 构建DMP用户画像(完结)》

资源目录

——/计算机教程/01MOOC/114-513-Spark+ES+ClickHouse 构建DMP用户画像(完结)/
├──第1章 DMP用户画像项目介绍  
|   ├──1-1 关于这门课,你需要知道的~1.mp4  36.55M
|   ├──1-2 DMP项目的意义和课程的侧重点.mp4  51.32M
|   ├──1-3 DMP项目架构及各个模块介绍.mp4  45.10M
|   ├──1-4 项目技术选型及各组件版本.mp4  28.77M
|   └──1-5 【知识点梳理】本章重难点总结.jpg  215.43kb
├──第2章 项目环境搭建  
|   ├──2-1 本章重点及学习计划.mp4  8.22M
|   ├──2-10 Springboot整合ClickHouse(下).mp4  110.92M
|   ├──2-11 Spark+phoenix整合Hbase.mp4  215.10M
|   ├──2-12 【项目文档】本章重难点--环境部署步骤__.jpg  1.26M
|   ├──2-13 【项目文档】本章重难点--表结构和数据导入步骤__.jpg  220.55kb
|   ├──2-14 【项目文档】Hive,ES,ClickHouse导入人群标签数据步骤__.jpg  192.51kb
|   ├──2-15 【项目文档】Hive、Hbase、ES、clickhouse表结构__.jpg  982.02kb
|   ├──2-2 基于docker一键部署大数据开发环境~1.mp4  127.94M
|   ├──2-3 环境搭建的常见问题及解决方案.mp4  44.55M
|   ├──2-4 数据准备:表结构和数据导入Hive数仓.mp4  213.61M
|   ├──2-5 数据准备:Hive数仓和Hbase同步标签数据.mp4  149.17M
|   ├──2-6 Springboot+JdbcTemplate+druid整合Hive(上)~1.mp4  127.02M
|   ├──2-7 Springboot+JdbcTemplate+druid整合Hive(下).mp4  181.31M
|   ├──2-8 Springboot+Mybatis+phoenix整合Hbase.mp4  415.15M
|   └──2-9 Springboot整合ClickHouse(上).mp4  194.92M
├──第3章 DMP和用户画像  
|   ├──3-1 本章重点及学习计划.mp4  11.02M
|   ├──3-2 用户画像是如何生成的.mp4  21.59M
|   ├──3-3 用户画像的标签维度.mp4  20.32M
|   ├──3-4 如何构建高质量的用户画像.mp4  32.67M
|   ├──3-5 用户画像和特征工程.mp4  15.61M
|   ├──3-6 DMP用户画像的正确使用场景.mp4  24.41M
|   └──3-7 【知识点梳理】本章重难点总结__.jpg  1.39M
├──第4章 用户画像搭建之特征工程  
|   ├──4-1 本章重点及学习计划.mp4  17.94M
|   ├──4-10 基于FM的特征交叉.mp4  46.57M
|   ├──4-11 Spark实现基于FM的特征交叉.mp4  348.27M
|   ├──4-12 特征筛选之GBDT和xgboost.mp4  67.84M
|   ├──4-13 Spark实现基于Xgboost的特征筛选(上).mp4  274.68M
|   ├──4-14 Spark实现基于Xgboost的特征筛选(下).mp4  192.81M
|   ├──4-15 特征监控方案设计.mp4  22.73M
|   ├──4-16 【知识点梳理】本章重难点总结__.jpg  2.75M
|   ├──4-2 特征工程流程.mp4  20.68M
|   ├──4-3 数值型数据的特征提取.mp4  31.25M
|   ├──4-4 文本型数据的特征提取.mp4  35.71M
|   ├──4-5 使用Spark实现中文分词+TF-IDF.mp4  100.78M
|   ├──4-6 Spark基于TF-IDF+SVM实现电商商品评论情感提取(上).mp4  128.86M
|   ├──4-7 Spark基于TF-IDF+SVM实现电商商品评论情感提取(下).mp4  154.22M
|   ├──4-8 类别型和时间型数据的特征提取.mp4  233.13M
|   └──4-9 构建新特征之特征交叉.mp4  24.69M
├──第5章 用户画像搭建之标签体系构建  
|   ├──5-1 本章重点及学习计划.mp4  8.95M
|   ├──5-10 商品标签与用户画像标签的匹配度.mp4  19.62M
|   ├──5-11 【知识点梳理】本章重难点总结__.jpg  186.04kb
|   ├──5-2 电商行业的标签体系以及reachCTR曲线.mp4  50.05M
|   ├──5-3 用户行为标签的ES存储.mp4  197.80M
|   ├──5-4 基于TF-IDF的标签权重算法(上).mp4  90.75M
|   ├──5-5 基于TF-IDF的标签权重算法(中).mp4  107.84M
|   ├──5-6 基于TF-IDF的标签权重算法(下).mp4  137.61M
|   ├──5-7 时间衰减因子和用户偏好标签的计算(上).mp4  189.30M
|   ├──5-8 时间衰减因子和用户偏好标签的计算(下).mp4  321.80M
|   └──5-9 ES构建Hbase二级索引对标签进行组合查询.mp4  188.07M
├──第6章 用户画像搭建之群体用户画像构建  
|   ├──6-1 本章重点及学习计划.mp4  9.36M
|   ├──6-10 通过订单数据挖掘用户的的行为属性及Spark代码(下).mp4  137.58M
|   ├──6-11 DMP的用户分群.mp4  40.74M
|   ├──6-12 【知识点梳理】本章重难点总结__.jpg  166.34kb
|   ├──6-2 朴素贝叶斯分类算法.mp4  47.22M
|   ├──6-3 使用Spark-ml实现基于朴素贝叶斯预测性别(上).mp4  233.52M
|   ├──6-4 使用Spark-ml实现基于朴素贝叶斯预测性别(中).mp4  268.37M
|   ├──6-5 使用Spark-ml实现基于朴素贝叶斯预测性别(下).mp4  97.51M
|   ├──6-6 基于RFM模型的用户价值划分及Spark代码(上).mp4  26.12M
|   ├──6-7  基于RFM模型的用户价值划分及Spark代码(下)_+微信307570512~1.mp4  263.01M
|   ├──6-8 使用Spark-ml实现基于Kmeans的用户消费分群.mp4  227.98M
|   └──6-9 通过订单数据挖掘用户的的行为属性及Spark代码(上).mp4  209.46M
├──第7章 用户画像搭建之DMP人群管理  
|   ├──7-1 本章重点及学习计划.mp4  9.75M
|   ├──7-10 将Hive数据转换为ClickHouse的Bitmap.mp4  273.50M
|   ├──7-11 基于Bitmap的ClickHouse人群圈选.mp4  127.77M
|   ├──7-12 本章知识点梳理__.jpg  137.97kb
|   ├──7-2 DMP的标签管理.mp4  154.07M
|   ├──7-3 DMP生成人群包数据.mp4  233.17M
|   ├──7-4 人群组合和人群去重.mp4  357.80M
|   ├──7-5 lookalike的主要算法.mp4  18.53M
|   ├──7-6 ClickHouse和ES在人群圈选上的对比.mp4  30.15M
|   ├──7-7 ClickHouse集成Bitmap.mp4  192.12M
|   ├──7-8 基于宽表的ClickHouse人群圈选.mp4  22.18M
|   └──7-9 将Hive数据导入到ClickHouse.mp4  75.21M
├──第8章 项目展示及版本升级解决方案  
|   ├──8-1 项目完整演示(上).mp4  181.40M
|   ├──8-2 项目完整演示(下).mp4  197.61M
|   ├──8-3 版本升级解决方案.mp4  20.64M
|   └──8-4 课程总结.mp4  99.01M
└──资料代码  
|   └──dmp_personas_system  

资源下载

抱歉,只有登录并在本文发表评论才能阅读隐藏内容,切记不要恶意刷,否则会被限制,先阅读用户规则,一旦进入黑名单,不可能再放出来。同时注意,暂停在线支付,请联系客服QQ2441105221。
  1. shrek_kk说道:

    :biggrin: 看看 学习

  2. 行者孙说道:

    矿主无私,大方得到。

  3. 饭野兔说道:

    学习学习

  4. 花火.说道:

    了解一下

  5. PatrickC说道:

    感谢分享

  6. adrain_z说道:

    感谢分享clickhouse

  7. jeremy说道:

    感谢分享!

  8. 清酒暖风说道:

    感谢分享!

  9. 冰做的风铃说道:

    感谢分享!

  10. 一阶线性说道:

    学习学习

  11. Medwyn说道:

    牛逼,正需要。

  12. 丢了丢说道:

    学习学习

  13. fearless说道:

    学习学习

  14. 京渡自渡人说道:

    感谢分享资源

  15. 羊排说道:

    学习学习

  16. 似水说道:

    感谢分享资源

  17. julyˇ说道:

    学习

  18. 一只小老虎说道:

    学习

  19. leejamin说道:

    学习

  20. momo2k23说道:

    求学。感谢up分享

  21. 小味说道:

    谢谢

  22. 空间祝福曲说道:

    用户画像clickhouse

  23. 僵僵熊说道:

    感谢分享

  24. stacker说道:

    感谢分享

  25. yexing说道:

    学习

  26. xiaojiudu说道:

    学习一下,谢谢分享

  27. xiaojiudu说道:

    学习

  28. feng07202说道:

    谢谢

  29. gaotian说道:

    感谢分享clickhouse

  30. 季夏三月说道:

    学习ClickHouseClickHouse11

  31. lua说道:

    感谢分享

  32. 坚毅的心说道:

    学习

  33. 丁丁说道:

    感谢分享

  34. 瑞哥哥真帅说道:

    学习

  35. KungPao-Ch1cken说道:

    学习一下,谢谢分享

  36. white_cat说道:

    感谢分享clickhouse :razz:

  37. 志伟admin说道:

    学习

发表回复