资源简介
结合实际案例推导机器学习数学模型以及项目实战的课程对于希望深入了解机器学习并应用其解决实际问题的人来说是非常有价值的。这样的课程通常包括以下几个方面的内容:
-
基础理论:介绍机器学习的基本概念、算法和数学原理,如线性回归、逻辑回归、决策树、随机森林、神经网络等。
-
案例研究:通过实际案例来展示如何应用这些算法。案例可能涉及不同领域的数据集,如金融、医疗、市场营销等。
-
数学推导:详细解释算法背后的数学原理,包括损失函数的定义、优化方法的选择(如梯度下降)、正则化技巧等。
-
编程实践:提供实验环境和数据集,让学员亲自动手实现算法,并调整参数以优化模型性能。
-
项目实战:引导学员完成一个完整的机器学习项目,从数据收集、预处理、特征工程、模型选择、训练、评估到部署。
这样的课程设计有助于学员:
- 理解原理:通过数学推导和案例研究,深入理解机器学习算法的工作原理。
- 提升技能:通过编程实践和项目实战,掌握使用机器学习库(如scikit-learn、TensorFlow等)的能力。
- 解决问题:学会如何将机器学习应用于实际问题,并评估模型的性能。
如果你对机器学习感兴趣,并且希望将其应用于你的工作或研究中,那么参加这样的课程将是一个很好的选择。不过,在选择课程时,请确保课程的内容与你的学习目标和兴趣相符,并查看课程的评价和反馈,以了解其他学员的学习体验。
资源目录
——/计算机教程JTDLG(15号盘)/26-贪心学院/007-结合实际案例推导机器学习数学模型以及项目实战/ ├──01-第1节 机器学习介绍 | ├──1.1机器学习、大数据、数据挖掘的区别和联系.mp4 38.62M | ├──1.2分类、回归和聚类的理论.mp4 33.74M | ├──1.3机器学习的流程 数据预处理.mp4 48.37M | ├──1.4案例:通过广告投放预测产品销量.mp4 247.56M | └──机器学习课件及代码.zip 72.40M ├──02-第2节 K-NN 最近邻 | ├──2.1KNN介绍.mp4 270.67M | ├──2.2欧式距离以及KNN实现.mp4 383.45M | ├──2.3KNN的决策边界.mp4 254.17M | ├──2.4通过交叉验证选择K.mp4 112.39M | ├──2.5特征缩放.mp4 26.45M | ├──2.6二手车估价案例.mp4 255.93M | └──2.7KNN的延伸内容(Optional).mp4 160.39M ├──03-第3节 线性回归与逻辑回归 | ├──QA.mp4 276.79M | ├──逻辑回归1.mp4 33.64M | ├──逻辑回归2.mp4 67.25M | ├──线性回归1.mp4 38.08M | └──线性回归2.mp4 59.85M ├──04-第4节 朴素贝叶斯 | ├──4.1朴素贝叶斯的核心思想.mp4 49.18M | ├──4.2垃圾邮件分类-01.mp4 234.25M | ├──4.3垃圾邮件分类-02.mp4 403.14M | ├──4.4手推一个完整的例子.mp4 399.41M | ├──4.5文本表示-01.mp4 101.23M | ├──4.6文本表示-02.mp4 275.49M | └──4.7Extensions.mp4 60.84M ├──05-第5节 SVM支持向量机 | ├──5.1SVM-01.mp4 649.36M | ├──5.2SVM-02.mp4 97.22M | ├──5.3SVM-03.mp4 253.45M | └──5.4SVM-04.mp4 416.31M ├──06-第6节 决策树与随机森林 | ├──6.1决策树01.mp4 416.13M | ├──6.2决策树02.mp4 518.40M | ├──6.3随机森林01.mp4 593.28M | ├──6.4随机森林02.mp4 421.18M | └──6.5随机森林03.mp4 162.49M ├──07-第7节 K-means | ├──7.1聚类分析.mp4 86.10M | ├──7.2kmeans算法.mp4 145.67M | ├──7.3kmeans算法过程及特性.mp4 127.65M | ├──7.4kmeans的实现.mp4 248.91M | ├──7.5kmeans案例.mp4 365.96M | ├──7.6kmeans的目标函数.mp4 244.31M | ├──7.7K值如何选择.mp4 128.61M | └──7.8其他聚类算法及问答.mp4 128.61M ├──08-第8节 矩阵分解 | ├──8.1Recommender-IT教程Shikey.Com.mp4 255.66M | ├──8.2矩阵分解推荐系统.代码演示.1-IT教程Shikey.Com.mp4 23.41M | └──8.3矩阵分解推荐系统.代码演示.2-IT教程Shikey.Com.mp4 570.18M ├──09-第9节 Boosting | ├──9.1XGBoost.mp4 170.30M | ├──9.2训练模型.mp4 236.98M | ├──9.3使用泰勒级数近似目标函数.mp4 422.30M | ├──9.4新的目标函数.mp4 292.86M | └──9.5寻找最好的Split.mp4 365.11M └──10-第10节 主题模型 | ├──10.1主题模型.mp4 378.11M | ├──10.2MLEvsMAPvsBayesian.mp4 218.10M | ├──10.3从生成的角度来看LDA.mp4 252.29M | └──10.4计算模型的参数.mp4 526.64M
感谢分享
感谢分享
看看项目实战
感谢分享
学习一下
感谢分享
感谢分享
感谢分享
感谢分享
感谢楼主分享
了解看看
感谢分享
感谢分享
学习一下
谢谢分享,正好需要学习一下
谢谢
了解看看
学习一下
感谢分享
感谢分享